Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Signal Transduct Target Ther ; 8(1): 1, 2023 01 02.
Article in English | MEDLINE | ID: covidwho-2244040

ABSTRACT

Integrins are considered the main cell-adhesion transmembrane receptors that play multifaceted roles as extracellular matrix (ECM)-cytoskeletal linkers and transducers in biochemical and mechanical signals between cells and their environment in a wide range of states in health and diseases. Integrin functions are dependable on a delicate balance between active and inactive status via multiple mechanisms, including protein-protein interactions, conformational changes, and trafficking. Due to their exposure on the cell surface and sensitivity to the molecular blockade, integrins have been investigated as pharmacological targets for nearly 40 years, but given the complexity of integrins and sometimes opposite characteristics, targeting integrin therapeutics has been a challenge. To date, only seven drugs targeting integrins have been successfully marketed, including abciximab, eptifibatide, tirofiban, natalizumab, vedolizumab, lifitegrast, and carotegrast. Currently, there are approximately 90 kinds of integrin-based therapeutic drugs or imaging agents in clinical studies, including small molecules, antibodies, synthetic mimic peptides, antibody-drug conjugates (ADCs), chimeric antigen receptor (CAR) T-cell therapy, imaging agents, etc. A serious lesson from past integrin drug discovery and research efforts is that successes rely on both a deep understanding of integrin-regulatory mechanisms and unmet clinical needs. Herein, we provide a systematic and complete review of all integrin family members and integrin-mediated downstream signal transduction to highlight ongoing efforts to develop new therapies/diagnoses from bench to clinic. In addition, we further discuss the trend of drug development, how to improve the success rate of clinical trials targeting integrin therapies, and the key points for clinical research, basic research, and translational research.


Subject(s)
Cell Communication , Integrins , Integrins/genetics , Cell Adhesion , Signal Transduction , Peptides
2.
Front Biosci (Landmark Ed) ; 27(2): 48, 2022 02 11.
Article in English | MEDLINE | ID: covidwho-1772157

ABSTRACT

BACKGROUND: Thymosin-α1 has been implicated into the treatment of novel respiratory virus Coronavirus Disease 2019 (COVID-19), but the underlying mechanisms are still disputable. AIM: Herein we aimed to reveal a previously unrecognized mechanism that thymosin-α1 prevents COVID-19 by binding with angiotensin-converting enzyme (ACE), which was inspired from the tool of network pharmacology. METHODS: KEGG pathway enrichment of thymosin-α1 treating COVID-19 was analyzed by Database of Functional Annotation Bioinformatics Microarray Analysis, then core targets were validated by ligand binding kinetics assay and fluorometric detection of ACE and ACE2 enzymatic activity. The production of angiotensin I, angiotensin II, angiotensin (1-7) and angiotensin (1-9) were detected by enzyme linked immunosorbent assay. RESULTS: We found that thymosin-α1 impaired the expressions of angiotensin-converting enzyme 2 and angiotensin (1-7) of human lung epithelial cells in a dose-dependent way (p < 0.001). In contrast, thymosin-α1 had no impact on their ACE and angiotensin (1-9) expressions but significantly inhibited the enzymatic activity of ACE (p > 0.05). CONCLUSION: The bioinformatic findings of network pharmacology and the corresponding pharmacological validations have revealed that thymosin-α1 treatment could decrease ACE2 expression in human lung epithelial cells, which strengthens the potential clinical applications of thymosin-α1 to prevent severe acute respiratory syndrome coronavirus 2 infection.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 Drug Treatment , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Humans , SARS-CoV-2 , Thymalfasin/pharmacology
3.
Frontiers in immunology ; 12, 2021.
Article in English | EuropePMC | ID: covidwho-1652178

ABSTRACT

Recent reports of rare ChAdOx1-S vaccine-related venous thrombosis led to the suspension of its usage in several countries. Vaccine-induced thrombotic thrombocytopenia (VITT) is characterized by thrombocytopenia and thrombosis in association with anti-platelet factor 4 (PF4) antibodies. Herein, we propose five potential anionic substances of the ChAdOx1-S vaccine that can combine with PF4 and trigger VITT, including (1) the proteins on the surface of adenovirus, e.g., negative charged glycoprotein, (2) the adjuvant components of the vaccine, e.g., Tween 80, (3) the DNA of adenovirus, (4) the S protein antigen expressed by the vaccine, and (5) the negatively charged impurity proteins expressed by the vaccine, e.g., adenovirus skeleton proteins. After analysis of each case, we consider the most possible trigger to be the negatively charged impurity proteins expressed by the vaccine. Then, we display the possible extravascular route and intravascular route of the formation of PF4 autoantibodies triggered by the negatively charged impurity proteins, which is accordant with the clinical situation. Accordingly, the susceptible individuals of VITT after ChAdOx1-S vaccination may be people who express negatively charged impurity proteins and reach a certain high titer.

SELECTION OF CITATIONS
SEARCH DETAIL